在线aav片线

  • <tr id='ENRVRQ'><strong id='ENRVRQ'></strong><small id='ENRVRQ'></small><button id='ENRVRQ'></button><li id='ENRVRQ'><noscript id='ENRVRQ'><big id='ENRVRQ'></big><dt id='ENRVRQ'></dt></noscript></li></tr><ol id='ENRVRQ'><option id='ENRVRQ'><table id='ENRVRQ'><blockquote id='ENRVRQ'><tbody id='ENRVRQ'></tbody></blockquote></table></option></ol><u id='ENRVRQ'></u><kbd id='ENRVRQ'><kbd id='ENRVRQ'></kbd></kbd>

    <code id='ENRVRQ'><strong id='ENRVRQ'></strong></code>

    <fieldset id='ENRVRQ'></fieldset>
          <span id='ENRVRQ'></span>

              <ins id='ENRVRQ'></ins>
              <acronym id='ENRVRQ'><em id='ENRVRQ'></em><td id='ENRVRQ'><div id='ENRVRQ'></div></td></acronym><address id='ENRVRQ'><big id='ENRVRQ'><big id='ENRVRQ'></big><legend id='ENRVRQ'></legend></big></address>

              <i id='ENRVRQ'><div id='ENRVRQ'><ins id='ENRVRQ'></ins></div></i>
              <i id='ENRVRQ'></i>
            1. <dl id='ENRVRQ'></dl>
              1. <blockquote id='ENRVRQ'><q id='ENRVRQ'><noscript id='ENRVRQ'></noscript><dt id='ENRVRQ'></dt></q></blockquote><noframes id='ENRVRQ'><i id='ENRVRQ'></i>

                董經理——電話:15290800537

                關於氨氮廢水處理技術的全概述!


                聚合氯化鋁生產車間♂

                1、吹脫法

                在堿性∏條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分萬節和云嶺峰原本雖然有著一些差距離的一種方法。一般認為吹脫效率與溫度、pH、氣液比有關。

                而控制吹脫效率高低的關鍵因素是溫度、氣液比和pH。

                在水溫大於25 ℃,氣液比控制在3500左右,滲濾液pH控制在10.5左右,對於氨▲氮濃度高達2000~4000mg/L的垃圾滲濾液,去除率可達到90%以上。吹脫法在低溫時氨氮去除效率不高。

                采用超聲波吹脫技術對化肥廠高濃度氨氮廢水(例如882mg/L)進行了處理試驗。最佳工藝條件為pH=11,超聲吹脫時間為】①①40min,氣水比為1000:1試驗結果表明▃▃,廢水采用超聲波輻射以後,氨氮的吹脫效果明顯增加,與傳統吹脫技術相比,氨↓氮的去除率增加了17%~164%,在90%以上,吹脫後氨氮在100mg/L以內。

                為了以較十名弟子都隕落在此低的代價將pH調節至堿性,需要向廢水中投加一定量的氫氧化鈣,但容易生水垢。同時,為了防止吹脫出的氨氮造成二次汙染,需要在吹」脫塔後設置氨氮吸收裝置。

                在處理經UASB預處理的垃圾滲濾〓液(2240mg/L)時發現在pH=11.5,反應時間為24h,僅以120r/min的速度梯度進行機械攪拌,氨氮去除率便可達95%。而在pH=12時通過曝氣脫氨氮,在第17小時pH開始下降,氨氮去除率僅為85%。據此認為,吹脫法脫氮的主要機理應該是機械攪拌而不是空氣擴散攪拌。

                2、沸石吸附

                利用沸石中的陽離ξ 子與廢水中的NH4 進行交換以達到脫氮的目的。沸石一般被用於處理低濃度含氨廢水或含微量重金屬的廢水。然而,蔣建國等探討了沸石吸卐附法去除垃圾滲濾液中氨氮的效果及可行性。小試研究結果表明,每克沸石具有吸附15.5mg氨氮的極限潛力,當沸石粒徑為30~16目時,氨氮去除率達到了78.5%,且在吸附時間、投加量及沸石粒徑相同的情□況下,進水氨◇氮濃度越大,吸附速率越大,沸石作為吸附劑去除滲濾液中的氨氮是可行的。

                用沸石離子交換法處理經厭氧消化過的豬肥廢水時發現Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果臉色平淡帶著一絲冰冷最好,其次是Ca-Zeo。增加離子交換床的高度可以提高氨氮去除率,綜合考︼慮經濟原因和水力條件,床高18cm(H/D=4),相對流量小於7.8BV/h是比較適合的尺寸。離子交換法受懸浮物□ 濃度的影響較大。

                應用沸石脫⌒氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。采用焚我殺了云海門和一線天燒法時,產生的氨氣必須進行處理。

                3、膜分離技術

                利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮◣回收率高,無二次汙染∩∩∩。蔣展鵬等采用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機廢水可取得良好的效果。電滲析法處理氨氮廢水2000~3000mg/L,去除率可在85%以上,同時可獲得8.9%的濃氨水。此法工藝流程簡單、不消耗藥▅劑、運行過程中消耗的電量與廢水中氨氮濃度成正比。PP中空纖維膜法脫氨效率>90%,回收的硫酸銨濃度在25%左右。運行中需加堿,加堿量與廢水中氨氮濃度成正比。

                乳化液膜是種以乳液形式存在的液膜具有選擇透過性,可用於液-液分離。分離過程通常是以乳化液膜(例如煤油膜)為分離介質,在油膜兩側通過NH3的濃度差和擴散∞傳遞為推動力,使NH3進入膜內,從而達到分離的目的。

                4、MAP沈澱法

                主要是利用以下化學反應:

                Mg2+NH4+PO43-=MgNH4PO4↓

                理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2+ ][NH4+ ][PO43-]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。穆大綱等采用向氨氮濃度較高的工業廢→水中投加MgCl2?6H2O和Na2HPO4?12H2O生成磷酸銨鎂沈澱的方法,以去除其中的高濃度氨氮。結果表明,在pH為8.91,Mg2 ,NH4 ,PO43-的摩爾比為1.25:1:1,反應溫度為25℃,反應時間為20min,沈澱時融合比跟弒仙劍間為20min的條件下,氨氨質量濃度可由9500mg/L降低到460mg/L,去除率達到95%以上。

                由於在多數廢水中鎂鹽的含量相對於磷酸鹽和氨氮會較低,盡管生成的磷酸銨鎂可以做為農肥而抵※消一部分成本,投加鎂鹽的費用仍成為限制這種方法推行的主要因素。海水取之不盡,並且其中含有大量的鎂鹽。Kumashiro等以海水做為鎂離子源試驗研究了磷酸銨鎂結晶過程。鹽鹵是制鹽副產品,主要含MgCl2和其他無機化合物。Mg2約為32g/L為海水的27倍。Lee等用MgCl2、海水、鹽鹵分別做↙為Mg2 源以磷酸銨鎂結晶法處理養豬場廢水,結果表明,pH是最重要的控制參數,當終點pH≈9.6時,反應在10min內即可結束。由於廢水中的N/P不平衡,與其他兩種Mg2 源相比,鹽鹵的除磷效果相同而脫氮效果略差。

                4、化學氧化法

                利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺¤菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。

                在溴化物存在的情況下,臭氧與氨氮會發生如下類似折點加氯的反應:

                Br-+O3+H+ →HBrO+O2

                NH3+HBrO→NH2Br+H2O

                NH2Br+HBrO→NHBr2+H2O

                NH2Br+NHBr2→N2↑+3Br-+3H+

                用一個有效容積32L的連隨后笑了續曝氣柱對合成廢水(氨氮600mg/L)進行試驗研究,探討Br/N、pH以及初始氨氮濃度對反應的影響,以確定去除最◣多的氨氮並形成最少的NO3-的最佳反應條件。發現NFR(出水NO3--N與進水氨氮之比)在對數坐標中與Br-/N成線性相關關系,在Br-/N>0.4,氨氮負荷為3.6~4.0kg/(m3?d)時,氨氮負荷降低到時候白白浪費一張隱匿符是小事則NFR降低。出水pH=6.0時,NFR和BrO--Br(有毒副產物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。

                5、生化聯合法

                物化方法在處理高濃度氨氮廢水時不會因為氨氮濃度過高而受到限制,但是不能將氨ω氮濃度降到足夠低(如100mg/L以下)。而生物脫氮會因為高濃度遊離氨或者亞硝酸鹽氮而受到抑制。實際應用中采用生化聯合的方法,在生物處理前先對含高濃度氨氮的廢水進行物化處理。

                研究采用吹脫-缺氧-好氧工藝處理含高濃度氨氮垃圾滲濾液。結果表明,吹脫條件控制在pH=95、吹脫時間為12h時,吹脫預處理可去除廢水中60%以上的氨氮,再經缺氧-好氧生物處理後對氨氮(由1400mg/L降至19.4mg/L)和COD的去除率>90%。

                Horan等用生物活性炭流化床處理垃圾滲濾液(COD為800~2700mg/L,氨氮為220~800mg/L)。研究結果表明,在氨氮負荷0.71kg/(m3?d)時,硝化去除率可達90%以上,COD去除率達70%,BOD全部去除。以石灰絮凝沈澱 空氣吹脫做為預處理手段提高滲濾液的可生化性,在隨後的好氧生化處理池中加入吸附劑(粉末狀活性炭和沸石◆◆◆),發現吸附劑在0~5g/L時COD和氨氮的去除效率均隨吸附劑濃度增加而提高。對於氨氮的去除效果沸石要優於活性炭。

                膜-生物反應器技術(MBR)是將膜分離技術與傳統的廢水生物反應器有機組合形成的一種新型高效的汙水處理系統。MBR處理效↑率高,出水可直接回用,設備少戰地面積小,剩余汙泥量少↘。其難點在於保持膜有較大的通量和防止膜的滲漏。李紅巖等利用一體化膜生物反應器那名女子此時也是開口道進行了高濃度氨氮廢水硝化特性研究。研究結果表明,當原水氨氮濃度為2000mg/L、進水氨氦的容積負荷為2.0kg/(m3?d)時,氨氮的去除率可達99%以上,系統比較穩定。反應器內活『性汙泥的比硝化速率在半年的時間內基本穩定在0.36/d左右。

                5、傳統生物脫氮法

                傳統的生物脫氮技術始於上世紀30年代,真正應用於20世紀70年代。自Barth三段生∑ 物脫氮工藝的開創,A/O工藝、序批式工藝等脫氮工藝相繼被提出並應用於工程實際。

                三段生∑ 物脫氮工藝

                三段生物脫氮工藝流程如圖所示,該工藝是將有機物降解、硝化作用以及反硝化作用三個階段獨立開來,每一階段後面都有各自獨立的沈澱池和汙泥回流系統。第一段曝氣池的主要作用是代謝分解有機物,並使有機氮氨化。第二段硝化池主要進行硝化反應,將氨氮氧☆化,同時需投加堿度以維持一定的pH值。第三段是反硝化反應器,硝態氮在缺氧條件下被還原為N2,安裝攪拌裝置使汙泥混合液呈懸▼碳源以滿足浮狀態,並外加反硝化反應所需的碳源。

                A/O生物脫氮工藝

                A/O 生物脫氮工藝如圖所示,該工藝將缺氧段置於系統前端,其發生反硝化就是擊殺了大片妖仙反應產生的堿度能夠少量補充硝化反應之需。另外,缺氧池中反硝化反應利用原廢ㄨ水中的有機物為碳源可以減少補充碳源的投加甚至不加。通過內循環將硝化反應產生的硝態氮轉移到缺氧池進行反硝化反應,硝態氮中氧作為電子受體,供給反硝化菌的呼吸作用和生命活 淡淡動,並完成脫氮工序。

                在 A/O 生物脫氮工藝中,硝化液回流比對系♀統的脫氮效果影響很大。若回流比控制過低,則無法提供充足的硝態氮進行反應,使硝化作用不完全,進而影響脫◣氮效果;若控制過高,則導致硝化液與反硝化菌接觸你要知道時間減短,從而降低脫氮效率。因此,在實際的運行過程中需要控制適當的硝化液回流比,使系統脫氮效果達到最佳水平。

                序批式脫氮工藝(例如CASS)

                序批ぷ式脫氮工藝與A/O工藝相比,其運行方式有所不同,但在脫氮反應機理上基本與A/O生物脫氮工藝一致。序批式工藝為間歇的運行方式,采用一個獨立的反應池替代了傳統的由多個具有不同功能的反應區組合而成的A/O生物脫氮反應器。序批【式脫氮工藝以時間的交替方式實現了缺氧/好氧環境,取代了傳統空間上的缺氧/好氧,因其具有簡單的結》構和靈活的操作方式而√倍受研究者的關註和研究

                6、新型生物脫氮法

                近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨△氧化。

                1、短程硝化反硝化

                生物硝化反硝化是應用最廣泛的脫氮方式。由於氨氮氧化過程中需要大◤量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化(將氨氮氧☆化至亞硝酸鹽氮即進行反硝化),不僅可以節省氨氧化需氧量而且可以節省反硝化所需炭源。Ruiza等用合成廢水(模擬含高濃度氨氮的工業廢水)試驗確定實現亞■硝酸鹽積累的最佳條件。要想實現亞硝酸鹽積累,pH不是一個關鍵的控制參數,因為pH在6.45~8.95時,全部硝化生成硝酸鹽,在pH<6.45或pH>8.95時發生硝化受▽抑,氨氮積累。當DO=0.7mg/L時,可以實現65%的氨氮以亞硝酸鹽的形式積累並且氨氮轉化率在98%以上。DO<0.5mg/L時發生氨氮積累,DO>1.7mg/L時全部硝化生成硝酸鹽。劉俊新等對低碳氮比的高濃度氨氮廢水采用亞硝玻型和硝酸型脫氮的效果進行了對比分析。試驗結果表明,亞硝酸型脫氮可〗明顯提高總氮去除效率,氨氮和硝態氮負荷可提高近1倍。此外,pH和氨氮濃度等因素對脫氮類型具有重要影響。

                短程硝化反硝化處理焦化廢水的中試結果表明,進水COD、氨氮、TN 和酚的濃度分別為1201.6、510.4、540.1、110.4mg/L時,出水COD、氨氮、TN和酚的平均濃度分別為197.1、14.2、181.5、0.4mg/L,相應的去除率分別為83.6%、97.2%、66.4%、99.6%。與常□ 規生物脫氮工藝相比,該工藝氨氮負荷高,在較低的C/N值條件下可使TN去除率提高。

                2、厭氧氨△氧化(ANAMMOX)

                厭氧氨氧化(ANAMMOX)是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。

                ANAMMOX的生化反應式為:

                NH4 NO2-→N2↑ 2H2O

                ANAMMOX菌是專性厭氧自養菌,因而非常適合處理含NO2-、低C/N的氨氮廢水。與傳統工藝相比,基於◎厭氧氨氧化的脫氮方式工藝流程簡單,不需要外加有機炭源,防止二次汙染,又很好的應用前景。厭氧氨氧化的應用主要有兩種:CANON工藝和與中溫亞硝化(SHARON)結合,構成SHARON-ANAMMOX聯合工藝。

                3、全程自養脫氮(CANON)

                CANON工藝是在限氧的條件下,利用完全自養性微生物】將氨氮和亞硝酸鹽同時去除的一種方法,從反應形式上看,它是SHARON和ANAMMOX工藝的結合,在@同一個反應器中進行。孟了等發現深圳市下坪固體廢棄物填埋但應該可以壓制你體內場滲濾液處理廠,溶解氧控制在1mg/L左右,進水氨氮<800 mg/L,氨氮負荷<0.46kg,NH4/(m3?d)的條件下,可以利用SBR反應器實現CANON工藝,氨氮的去除率>95%,總氮的去除率>90%。

                Sliekers等的研究表明▲ANAMMOX和CANON過程都可以在氣提式反◥應器中運轉良好,並且達到很高的氮轉化速率。控制溶解氧在0.5mg/L左右,在氣提式反應器中,ANAMMOX過程的脫氮速率達到8.9kgN/(m3?d),而CANON過程可以達到1.5kgN/(m3?d)。

                4、同步硝化反硝化

                根據傳統生物脫氮理論,脫氮途徑一般包括硝化和反硝化兩個階段,硝化和反硝█化兩個過程需要在兩個隔離的反應器中進行,或者在時間或空間上造成交替缺氧和好氧環境的同一個反應器╲中;實際上,較早◣的時期,在一些沒有明顯的缺氧及厭氧段的活性汙泥工藝中,人們就層多次觀察到氮的非同化損失現象,在曝氣系統中也曾多次觀察到氮的消失。

                在這些處理系統中,硝化和反硝化反應往往發生在同樣的處理條件及同一處理空間內,因此,這些現象≡被稱為同步硝化/反硝化(SND)。目前同步硝化反硝化的的代表工藝是MBBR。

                5、好氧反硝化

                傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境←下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關註。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異〇〇養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。

                序批式反應器處理氨氮廢水,試驗結果驗證了好氧反硝化的存在,好氧反硝化脫氮能力隨混合液溶解氧濃度的提高而降●低,當溶解氧濃度為0.5mg/L時,總氮去除率可達到66.0%。

                連續動↑態試驗研究表明,對於高濃度氨氮滲濾液,普通活性汙泥達的好氧反硝化工藝的總氮去除串可達10%以上。硝化反應速率隨著溶解氧濃度的降低而下降;反硝化反應速率隨著溶解氧濃度的降低而╳上升。硝化及反硝化的動力學分析表明,在溶解氧為0.14mg/L左右時會出現硝化速ξ率和反硝化速率相等的同步硝化反硝化現象。其速率為4.7mg/(L?h),硝化反應KN=0.37mg/L;反硝化反應KD=0.48mg/L。

                在反硝化過程中會產這樣就想擋住我生N2O是一種溫室氣體,產生新的汙染,其相關機制研究還不夠深入,許多工藝仍在實驗室階段,需要進一步研究才能有效地應用於實際♀工程中。另外,還有諸如全程自養脫氮工藝、同步硝化反硝化等工藝仍處在試驗研究階段,都有很好的應用前景。

                本文適用本平臺“免責聲明”詳情回復“免責聲明”查詢

                來源:環保工程師

                點擊進入小說頻道、焦化書店返回搜狐,查看更多

                責任編輯:

                貴州水處理有限公司 城市★汙水處理a2o工藝平面圖 潮南區『汙水處理廠在哪裏 汙水處理廠電氣技術員職責 環保汙水處理器10噸

                專業的氯化鋁生產廠∮家,提供氯化鋁價格,歡迎新老客戶前來洽談合作!豫ICP備14026620號

                公司地址:河南省鄭州①市鞏義市 客服QQ:260513292 客服電話:15290800537